Investigating intuitive and deliberate processes statistically: The multiple-measure maximum likelihood strategy classification method
نویسندگان
چکیده
One of the core challenges of decision research is to identify individuals’ decision strategies without influencing decision behavior by the method used. Bröder and Schiffer (2003) suggested a method to classify decision strategies based on a maximum likelihood estimation, comparing the probability of individuals’ choices given the application of a certain strategy and a constant error rate. Although this method was shown to be unbiased and practically useful, it obviously does not allow differentiating between models that make the same predictions concerning choices but different predictions for the underlying process, which is often the case when comparing complex to simple models or when comparing intuitive and deliberate strategies. An extended method is suggested that additionally includes decision times and confidence judgments in a simultaneous Multiple-Measure Maximum Likelihood estimation. In simulations, it is shown that the method is unbiased and sensitive to differentiate between strategies if the effects on times and confidence are sufficiently large.
منابع مشابه
Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملImplementation of the Multiple-Measure Maximum Likelihood strategy classification method in R: Addendum to Glöckner (2009) and practical guide for application
One major challenge to behavioral decision research is to identify the cognitive processes underlying judgment and decision making. Glöckner (2009) has argued that, compared to previous methods, process models can be more efficiently tested by simultaneously analyzing choices, decision times, and confidence judgments. The Multiple-Measure Maximum Likelihood (MM-ML) strategy classification metho...
متن کاملInvestigating the Relatedness of Cloze-Elide Test, Multiple-Choice Cloze Test, and C-test as Measures of Reading Comprehension
Reading comprehension ability consists of multiple cognitive processes, and cloze tests have long been claimed to measure this ability as a whole. However, since the introduction of cloze test, different varieties of it have been proposed by the testers. Thus, the present study was an attempt to examine the relatedness of Cloze-Elide test, Multiple-choice (MC) cloze test, and C-test as three di...
متن کاملSpectral and Spatial-Based Classification for Broad-Scale Land Cover Mapping Based on Logistic Regression
Improvement of satellite sensor characteristics motivates the development of new techniques for satellite image classification. Spatial information seems to be critical in classification processes, especially for heterogeneous and complex landscapes such as those observed in the Mediterranean basin. In our study, a spectral classification method of a LANDSAT-5 TM imagery that uses several binom...
متن کاملComparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کامل